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-^u»raftry-r-—?hysptt:^eggr"'öT tti±g- p«per in An ynnvlfln 
fn expository account  of the  theory of/dynamic 

rograramlng..''   To  Illustrate  the general  prin- 
ciples,^ two particular problems,  one/of deter- 
ministic   type and  one  of  stochastl?r type,  are 
treated. / y 

SOME  APPLICATIßtfS  OF 
THE THEORY OF DYNAMIC   PROGRAMMING—A  REVIEW 

Richard/Bellman 

§1.     Introduction 
~~  i 
In this exposltoiTy pap«?,  dedicated   to an  introduction to 

and an  illustration  of  the   teNchniques  of  the   theory of dynamic 

programming,  we  shall  con8ider~|wo problems  of rather simple   forra«*^- 

Problem (l) (Optimal   Allocation). 

We are given  a  resource,   x,   to divide  into  two parts,  y 

and x—y.     From y we  obtain a  return of g(y);   from x—y a return 

of h(x—y).     In   so doing,   we expend a  certain  amount of the ori- 

ginal   quantity and   are   left with a new quantity,   ay + b(x—y), 
T7i<?. pv'.;i</e,^   (4    -f^ 

where   0 <  a,   b  <  1.     This  process   Is  now continued.     How1 duu'S' une 

allocate  at each stage   so  as  to maximize   the   total  return obtained 

over a  finite   or unbounded  number of stages^ 

.-Froblamfe; (Efficient Gold  Mining). 

We are  fortunate  enough  to possess  two gold mines,  Anaconda 

and Bonanza,   the  first  of which contains  an amount x  of gold, 

while   the   second  possesses an amount y.     In addition,  we  have  a 

rather delicate  gold^mining machine  which has  the  property that 

If used to mine  gold  In Anaconda,   there   is a probacility p^ that 

It will mine  a   fraction  r.   of  the   gold   there  and  remain  In 

1 
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A''' 
working order, and a probability (l—pA) that It will mine no 

gold and be damaged beyond repair.  Similarly, Bonanza has asso- 

ciated the probabilities p^ and (l—p*) and the fraction r^. 

We begin by using the machine In either the Anaconde or 

Bonanza mine.  If the machine Is undamaged, we again make a 

choice of using the machine In either of the two mines, and con- 

tinue In this way, making a choice before each mining operation, 

until the machine is damaged. 

What sequence of choices maximizes the amount of gold mined 

before the machine is damaged? 

Insofar as these problems Involve multi-stage processes, 

large numbers of variables (when formulated in classical terms), 

chance events (in the second case), and the determination of 

policies rather than functions, they typify a very large set of 

important and difficult problems which have arisen in recent 

years to plague the economist, industrialist, strategist, and 

through them, the mathematician. 

The methods we shall employ to treat the above questions 

constitute a part of the theory of dynamic programming, a mathe- 

matical theory which has been created over the last few years 

specifically to meet the challenge of these problems.  Applica- 

tions of the theory have already been made to the theory of 

Investment and allocation, to logistics, to testing and learning 

theory, to problems of purchasing and Inventory, to scheduling, 

to the planning of industrial and economic processes, and to con- 

trol problems In engineering and economics. 

« 
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§2.     Optimal Allocation—Classical Formulation 

Let us now see how Problem 1 above would be attacked, 

employing conventional techniques. 

If there is only one stage to the process, the total mmtamm 

return Is 

(2.1) R,(x,y) - g(y) + h(x-y). 

The problem of maximizing Rt(x,y) over y In [0,x] is one which 

may be solved readily by means of calculus, or graphically. 

If there are two stages, let yi be the choice in the first 

step and y2   the choice at the second; then 

(2.2) R2(x,y1,y2) - g(y1) + h(x1-y1) + g{yz)   + h(x2-y2), 

where 

(2.3) xt - x, xa - ay, + b(x1-y1), 

and yi and yz  are constrained by 

(2.4) 0 ^ yi < x,,  0 ^ y2 ^ xe. 

Quite generally, if there are N stages, the total return 

due to successive allocations of yi,ya,*'*.yN will be 
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(2.5) nlf{xi,yi,7M,"'7Ji)  - g(yi) + ^i^i-Yi) + g(ya) 

+ h(x2~y2) + •••g(yN) + h(xN-yN), 

where 

(2.6) 

Xi - x, 

x2   - ayt + b(x1-yl) 

and (yi »ya , *' *yN) lies In the region 

(2.7)    0 < y, ^ x, 

0 < yz ^ x2 

R: 

0 < ^N < XN 

Even  for  small n  the  problem of determining the maximum of 

Rj^  over  the  region described  by  the   inequalities  of   (2.7)   is a 

problem  of  formidable  proportions,  particularly  since  some  of 

the   extreraura points may be at endpolnts,   thus rendering a direct 

application of calculus  impossible. 
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_§3.  Optimal Allocation—Functional Equation Approach 

The key to a different and more fruitful approach to 

Problem 1 Is the petulant comment that the conventional approach 

provides too much Information, far more than the practical man 

carrying out the process needs.  He does not need the values of 

yitJzf'"',  and yN; he needs only the value of yt, given N and x. 

Let us then use this observation to provide a different 

formulation. 

To begin with, let us call any choice of yt,ya,'*'yN, for 

an N—stage process, a policy, and call any policy which yields 

maximum value of Rjj(x,yj ,ys ,' * * ,yN) an optimal policy.  Observing 

that the total return obtained using an optimal policy depends only 

upon x, the initial quantity of money, and N, the number of stages, 

we define 

(j5-l)     ^N^x^ " total return obtained from an N—stage process 
given an initial amount x and employing an 
optimal policy. 

Using this notation, let us compute the total return obtained 

using an Initial division of x into y and x—y in the first step 

of an N—stage process.  The immediate return due to the initial 

allocation will be g(y) + h(x—y), and we will have ay + b(x—y) 

with which to continue for N--1 remaining stages.  It Is clear 

that whatever the choice of y Initially, the remaining amount, 

ay + b(x—y), will be used optimally for the N—1 remaining stages, 

yielding, therefore, a further return of f»,(ay + b(x—y)).  Hence 

the total N—stage return due to an Initial allocation of y will be 
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(3-2)    RN(x,y) - g(y) + h(x-y) + ^^(ay + b(x-y)) 

By definition. 

(3.3)    fN(x) - Max  RN(x,y) 
0<y<x 

^  fgCy) + h(x-y) + fN 1 (ay + b(x-y)) Max 
0<y<x 

This is the basic functional equation for the sequence 

fN(x).  Its importance lies in the fact that it translates a 

problem In policy space Into one in the more familiar function 

space. 

34.  Computational Techniques 

Let us now see what we have accomplished by converting the 

problem from that of maximizing the function of N variables in 

(2.5) to that of determining the sequence <fN(x)V.  In the first 

place, we hav?? presented ourselves with a nonlinear sequence 

of functional equations possessing all the difficulties attend- 

ant upon nonlinear equations.  In return, however, we have 

reduced the dimensions of the problem from N to 1 and thus con- 

siderably the analytic and computational aspects of the problem. 

Beginning with fj(x), which Is given by 

(4.1)    Mx) - Max  Pgfy) + h(x-y)1 , 
0<y<x U -1 

we may compute f2(x), f3(x), and so on, ualng (3-3).  In the 
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course of the computation of fN(x) we automatically compute 

yjfx) - yN(x), which is actually the essential Information. 

Conversely, given yN(x) for each N and x we may compute 

fN(x) recursively.  We have then a duality between the maximum 

return, fN(x), and the optimal policy, symbolized by yN(x).  A 

knowledge of either enables the other to be computed. 

Let us now exploit this fact.  Since the amount remaining 

after each stage decreases geometrically, it is clear that for 

large N there will be little difference between fN(x) and 

fN .(x), assuming, of course, that g(0) - h(0) - 0 and that 

g and h are continuous near zero.  It follows that for large N 

we may write 

(4.2) f(x) - foo(x) ^fN(x) 

and replace the sequence of equations in {J).3)   by the one equation 

(4.3) f(x) - Max  fgty) + h(x-y) + f(ay + b(x-y))1. 
0<y<x «- JL 

This equation, with the solution fixed by the requirement 

that f(o) - 0, may now be solved by successive approximations. 

One set of approximations is, of course, the sequence jfN(x)> 

determined above.  However, we may do much better in the follow- 

ing way:  Instead of seeking approximations in function space, 

let us look for approximations in policy space; which Is to 

say, Instead of approximating to f(x), the maximum return, let us 

approximate to y(x), the optimal allocation. 
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In many of these problems, experience will have yielded a 

great deal of Information concerning optimal policies, and It 

Is precisely In this type of approximation that this experience 

can be put to best use. 

Let us Illustrate: In solving (4.3), we may consider the 

following possible policies, each of which have some Intuitive 

basis 

(a) At each stage let y « 0 or x depending upon 
/^ us whether g(x)/(l—a)x > h(x)/(l—b)x or not 

(b) Choose y so that 

(i-ajy  (i-bHx-yJ 

Let f0(x) "  f (x) be the return calculated by recurrence, 

using one of the other of these policies.  We may now compute 

successive approximations by means of the relation 

(4-5)    f
N+1(

x) - Max  fsCy) + h(x-y) + fN(ay + b(x-y))"]. 
0<y<x L N _i 

The Important point to emphasize is that we clearly have 

(4.6)    f0(x) < f1(x) ^ fa(x) ••• . 

Thus each approximation is automatically an Improvement. 

§5«  Some Typical Results. 

Let us now present some typical results which may be obtained 

concerning the nature of the solutions of this new class of 
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functlonal  equations.     These   results  are   Important   since   they 

yield   first  approximations   to  the   solutions   f  of more   complicated 

equations. 

Theorem  1.     !£ g(x)   and   h(x)   are both  strictly  convex   functions 

of x,   an  optimal  policy requires that  y - 0  or x. 

The   situation where  g  and  h are  both  concave   Is  more   com- 

plicated . 

Theorem 2.     Let 

(a) g(0)   - h(0)   - 0, 

(b) g'U),   h'(x)   >   0,   for  x >   0, 

(c) g"(x) ,   hM(x)   <  0,   for  x ^ 0, 

and  consider  the  sequence  of equations 

f^x)   -     Max 
0<y<x 

g(y)  +  h(x-y) 

fn+l(x) "  Max  r^y) + h(x-y) + fn(ay + b(x-y)) 1» n-1,2," 
0<y<x L ,      -J 

For each n, there Is a unique y - yn^x) which yields the 

maximum.  If b < a, we have yi < yz ^ y» < •*•, and the reverse 

Inequalities for b > a.  In particular. If yn(
x) " x, for some n. 

In the case b •£ a, then ym(x) - x for m ^ n. 

This result Is useful for approximation purposes since yj,YZ 

and even y3 may be determined by hand computation quite quickly. 

Even when g and h are convex and we know that y •- 0 or x. 

It la not easy to determine which is the correct y—value. The 

following result la useful for approximation purposes: 
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Theorem 3.  The solutlon of 

(5.1) F(x) - Max i cxd + F(ax), exf + F(bx) j 

Is given by 

(5.2) y - x for 0 ^ x < xo 

" 0 f'or ^^ x' 

where 

l/(f^) 

(50)     xo - [(c/(l-^
d))/(e/(l-bd))J 

Another particular case where the solution may be obtained 

simply is that where g and h are quadratic in x. 

Let us now indicate briefly how Theorem 3> and other results 

concerning the solution of particular equations, may be used to 

obtain approximate solutions.  Given two functions, g(x) and 

h(x), we may obtain an approximate solution to equation (^.3), 

if we can obtain approximations to g(x) and h(x) by me^ns of 
d      f v functions of the type ex and ex .  Replacing x by eJ,   we see 

that this Is equivalent to approximating to g(e^) by ce *, or to 

log g(ey) by log c + dy.  Consequently, to obtain our approxi- 

mate expressions, we plot log g(ey) and log h(ey) qua functions 

of y, and look for straight—line fits of the form a + by.  This 

may readily be done by inspection. 
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Havlng obtained these approximations to g and h, we use 

Theorem 3 to find the exact solution of the approximate equa- 

tion.  This solution has an associated policy which may be used 

as an approximate policy for the original problem.  This 

approximate policy, in turn, yields an approximate solution, 

which we may iterate, as above, to obtain monotone convergence. 

In Theorems 1, 2, and 5 discussed above, we have shown 

how various important properties of the optimal policy are con- 

sequences of certain simple properties of stage—by—stage payoff 

functions.  In order to determine the precise influence of these 

properties upon the degree of complication of the solution, we 

computed the solution of a problem in which g and h exhibited the 

"diminishing retum" property.  We took 

-10/x -15/x 
(5.^)    g(x) - e    ,  h(x) - e 

and a •« .8, b - .9, and computed f(x), the solution of (4.3), 

by means of successive approximations. 

Below, we see the curves for f1(x), f2(x), and f(x).  They 

illustrate the slowness of successive approximations based on 

successive stages, and the necessity for using the approximate 

techniques mentioned above if one wishes rapid convergence. 

The curve for y(x) given in Figure 4 illustrates the extreme 

complexity that may be expected in an optimal policy if we intro- 

duce functions which have points of inflections.  Since these 

functions occur quite frequently in applications, as manifesta- 

tions of the law of diminishing returns mentioned above, again 

the importance of approximation techniques is made clear. 
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$6.     Gold Mining 

Let us now consider the second problem, the one concerning 

the gold-mining machine of sensitive nature.  This problem pos- 

sesses an additional feature of difficulty due to presence of 

chance mechanisms. 

A policy here will consist of a choice of A's and B's, 

which Is to say, mining In Anaconda or In Bonanza.  However, any 

such sequence such as 

(6.1)     S - AABBBABB'" , 

must be read:  A first, then A again If the machine Is undamaged; 

then B Is the machine still undamaged, and so on. 

If Initially, to avoid any conceptual difficulties inherent 

in unbounded sequences, we consider only mining processes which 

end automatically after N steps, regardless of whether the mach- 

ine is damaged or not, it is quite easy to list all the possible 

policies. 

Since we are dealing with a stochastic process, it is not 

possible to talk about the return from a policy.   We must console 

ourselves with some average of the possible returns.  The simplest 

such is the usual average, or expected value. 

Let us then agree that we are interested in the policy which 

maximizes the expected value of the amount of gold mined before 

the machine is damaged.  Corresponding to every policy such as 

We might note in passing that thi^idea Is a very difficult one 
to explain to a neophyte at cai-* games, particularly in explatn— 
ing the theory of a finesse. 
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(6.1), there will be an expected return.  To determine an opti- 

mal policy it is merely necessary to list all possible policies, 

compute the expected returns and compare.  Even if feasible, 

this method is clumsy and completely unreveallng as to the struo- 

ture of an optimal policy. 

§1.     Functional Equation Approach 

In place of the above enumeratlve approach, let us employ 

the functional equation technique of §3. Let us also simplify 

matters by going directly to the unbounded process.  We define 

(7.1)     f(x,y) - expected amount of gold mined before the 
machine is damaged when A has x, B has y, 
and an optimal policy Is employed. 

Let us compute the expected amount of gold mined if an A 

operation is used first, a quantity we denote by f_(x,y).  The 

total expected amount will be piTiX,  as a result of the Initial 

stage, plus the expected amount mined from the second stage on. 

It is clear that an optimal policy will be pursued from this 

point on If the machine survives.  Hence, the expected amount 

obtained from the second stage on will be f((1—ri)x,y), since 

Anadonda now possesses (l—ri)x and Bonanza still has y. 

Thus , 

(7.2)     fa(x,y) - Pi frtx + f((l-r1)x,y) J 

Similarly, 

I 
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(7.3) fb(x,y)  - p2   j   rzx -f   r(x, (l-r2 )y) ~| • 

Since we wish to choose A  or B so as  to maximize   the  over- 

all  expected  return,  we have 

(7.4) f(x,y)   -Max   [\(x,y),   fb(x,y)J, 

which  yields   the   functional  equation, 

(7.5) f(x,y)   - Max 

A:     pj   QrtX +  f((l-ri)x,y)3| 

B:     Ps   Qrzy +  f (x, (l-r8)y)^3 

J 

§8.  The Solution 

It may be shown, cf. [2], [?] , [.17], that the solution to 

(7.5) Is given by 

(a)  if P**'**- >  P?r^y  , take the A choice 
i—Pi       1—Pa 

(8.1)     (b)  if ^lX < P^y  , take the B choice 

(c)  If El|i^ - P?r2y  , either choice Is optimal 
i—Pi       iHPe 

U-Pi;   U-Pa) 
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Observe that this type of solution Is Ideally suited to a 

problem Involving chance effects. It tells what to do next In 

terms of where one Is. Clearly, If from every position, the 

next move Is determined, one can determine all possible optimal 

sequences. However, In this case as In so many similar cases, 

the solution Is most clearly presented In the above form. 

For further details concerning problems of this type, we 

refer to [2], \j] ,   [9j, [l6] , and [17]. 

§9-  Discussion of the Solution 

One of the principal reasons for attacking problems of the 

above type, which are extremely Idealized and simplified versions 

of problems occurring In applications, lies In the fondly 

cherished hope that the pattern of the solution may make Itself 

clear.  Interpreting the mathematical solution In terms of intui- 

tive concepts, we may discover some metaphysical concept such as 

a "principle of least action" which we can apply to problems of 

more complicated type. 

Let us see what Interpretation we can give to the solution 

given In (8.1).  The expression Pirix/(l—Pi) has as its numera- 

tor p1rix, the Immediate expected gain from an operation, while 

Its denominator is (1—Pi), the probability that the machine will 

be destroyed, which is to say, the Immediate expected loss.  The 

expression Pargy/Cl—pa) consists of a similar ratio. 

Consequently, both expressions are ratios of immediate 

expected gain to immediate expected loss, and the optimal policy 

Is to choose at each stage the operation which maximizes the ratio, 
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Although this policy Is not an optimal policy for all such 

problems. It Is an excellent rule—of—thumb, and one which may 

readily be applied. 

§10.     A General Description of Dynamic Programming Problems 

Having given some simple examples of dynamic programming 

problems, let us now see if we can, in some general way, charac- 

terize these problems.  They possess the following common features 

(10.1) 

(a) Multi-stage processes are involved. 

(b) At each stage, the state of the process is des- 
cribed by a small number of parameters. 

(c) The effect of a decision at any stage is to 
transform this set of parameters into a similar 
set. 

We have purposely left the description a bit vague, since 

we feel that it is the spirit of the problem rather than the 

letter which is significant.  A certain amount of ingenuity is 

always required in attacking new questions, and no amount of 

axiomatics and rigid prescriptions can ever banish it. 

Add to the above the following simple 

Principle of Optimality;  An optimal policy has the property 

that whatever the initial state and initial decision may be, the 

remaining decisions must constitute an optimal policy with regard 

to the state resulting from the first decision, and we have the 

basic ingredients of the theory of dynamic programming.  The rest 

is mathematics and experience. 
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§11.     Some Typical Problems 

To illustrate the way problems of multi-stage Htype occur 

in these fields, let us cite som» typical problems: 

1. A Scheduling Problem;  Suppose we have a number of 

different objects which must be processed by a number of machines 

of different type.  We assume that each machine can process only 

one item at a time and that the machines must be used in a fixed 

order.  Qiven the times required for each machine to process 

each item, in general different, in what order should the 

objects be processed so as to minimize the total time required 

to process the complete set of iteas? 

2. A Logistics Problem;  Over a period of years, it is 

necessary to purchase a number of different types of equipment 

with different Job performance ratings, different costs, and 

different salvage or resale values, in order to perform a num- 

ber of assigned tasks.  How should money be allocated to purchase 

the different classes of equipment so as to minimize the amount 

of mo»ey required to do a certain Job, or conversely, so as to 

maximize the Job done for a given appropriation of money? 

3. A Smoothing Problem: There is a fluctuating demand for 

a product which requires a certain production force of employees 

at any given time. If the actual number of employees is greater 

than required, a certain loss is incurred due to nonproductivity. 

On the other hand, a certain loss is incurred whenever new 

employees are hired. What production force should be maintained 

so as to minimize the total loss over some fixed time period? 
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4. An Optimal Inventory Problem;  At some initial time we 

have a quantity of merchandise in stock and are given the Infor- 

mation that at the end of one time period we will be required 

to deliver a certain quantity of this merchandise.  The precise 

amount required is not known, but a distribution curve for the 

demand is known.  To meet this demand we may order more mer- 

chandise at a cost depending upon the amount ordered. it  the 

demand oxeeeds—^he-amount -In gtoclc, Tpen«lfey -depend-lng-^pon -^h» 

amount erdarad.  If the demand exceeds the amount in stock, a 

penalty depending upon the deficit is levied and the request is 

fulfilled as far as possible. 

Assuming that the situation repeats Itself periodically 

and that future costs are discounted at a fixed rate, what 

ordering policy minl»lz#a the over—all expected cost? 

5. A Control Problem:  We are given an engineering system 

which is ruled by a system of differential or difference equa- 

tions.  To maintain the system in its desired state, it is neces- 

sary to exert some control, the mathematical manlfestaf.on of 

which is a forcing term. 

It is desired to control the system In such a way that the 

total cost, which is compounded of the cost of deviation from 

the desired state, plus the cost of control, is a minimum. 

6. Economio Investment;  In managing a business enterprise, 

we have our choice of taking money out as immediate profit, 

or of reinvesting the money to enlarge the business and Increase 

future profit.  What reinvestment policy maximizes the total 

profit derived over a given time period? 
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7. Bottleneck Problems;  Suppose that we have a complex 

of Industries, as for example, steel, tool, and auto, all 

employed In the production of one particular Item, such as autos. 

At any particular time we have our choice of allocating resources 

such as money, steel, and tools, to produce steel, tools, or 

autos, or to build steel factories, tool factories, or auto 

factories. 

What allocation policy maximizes the total number of autos 

produced over a given time period? 

8. Learning Theory:  Suppose that we have two hundred 

critically ill patients and two new wonder drugs as yet untested. 

How should these drugs be tested on the patients so as to maxi- 

mize the expected number of patients who are cured? 

9. Testing Theory:  Suppose we are testing a group of 

objects for a specific property and are given the probability, 

for each object, that the test will disclose this property if it 

exists, and the prior probability that each object has this 

property.  What testing procedure will minimize the expected time 

required to determine a given number of objects with the required 

property? 

For those interested In the mathematical treatment of these 

problems, we cite the following references: 

1, 18, 7    Ad 7:  10 

12 Ad 8;  20, 21, 22 

12 Ad 9:  3 

Ad   1: 19,   I1» Ad  4 

Ad  2: 3,   4,   5, 8 Ad  5 

Ad   5: 13 Ad  6 
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